Deep Learning

10 Building Blocks of CNNs

Dr. Konda Reddy Mopuri
Dept. of AI, IIT Hyderabad Jan-May 2024

CNNs

- The Convolutional Neural Networks

CNNs

- The Convolutional Neural Networks
- Class of ANNs that are Shift/Space invariant
- Makes CNNs very well suited for Signal Processing (Why?).

An MLP

An MLP

- Input is a vector
- Series of densely connected hidden layers

An MLP

- Input is a vector
- Series of densely connected hidden layers
- Neurons in each layer are independent!

An MLP for processing an image

- Say, we want to process a 200×200 RGB image

An MLP for processing an image

- Say, we want to process a 200×200 RGB image
- Vectorizing leads to $200 \times 200 \times 3 \rightarrow 120 K$ neurons in the input layer

An MLP for processing an image

- Say, we want to process a 200×200 RGB image
- Vectorizing leads to $200 \times 200 \times 3 \rightarrow 120 K$ neurons in the input layer
- A hidden layer of same size leads to $\approx 1.44 e^{10}$ weights $\rightarrow \approx 58 G B:-($

An MLP for processing an image

- Full connectivity blows the number of weights \rightarrow hardware limits, overfitting, etc.

An MLP for processing an image

- Full connectivity blows the number of weights \rightarrow hardware limits, overfitting, etc.
- Flattening removes the structure

Large Signals

- Have invariance in translation

Large Signals

- Have invariance in translation
- Features may occur at different locations in the signal

Large Signals

- Have invariance in translation
- Features may occur at different locations in the signal
- Convolution incorporates this idea: Applies same linear operation at all the locations and preserves the structure

Convolution

	Kernel or filter (width w)	
2	0	-1

Output (width W-w+1)

Convolution

	Kernel or filter (width w)	
2	0	-1

Output (width W-w+1)

Convolution

Output (width W-w+1)

Convolution

- Preserves the structure

Convolution

- Preserves the structure
- if the i / p is a 2 D tensor $\rightarrow \mathrm{o} / \mathrm{p}$ is also a 2 D tensor

Convolution

- Preserves the structure
- if the i / p is a 2 D tensor $\rightarrow \mathrm{o} / \mathrm{p}$ is also a 2 D tensor
- There exist a relation between the locations of i / p and o / p values

Convolution

- Let $\mathbf{x}=\left(x_{1}, x_{2}, \ldots x_{W}\right)$ is the input, $\mathbf{k}=\left(k_{1}, k_{2}, \ldots k_{w}\right)$ is the kernel

Convolution

- Let $\mathbf{x}=\left(x_{1}, x_{2}, \ldots x_{W}\right)$ is the input, $\mathbf{k}=\left(k_{1}, k_{2}, \ldots k_{w}\right)$ is the kernel
- The result $(x \circledast k)$ of convolving \mathbf{x} with \mathbf{k} will be a 1D tensor of size $W-w+1$

$$
\begin{aligned}
(x \circledast k)_{i} & =\sum_{j=1}^{w} x_{i-1+j} k_{j} \\
& =\left(x_{i}, \ldots x_{i+w-1}\right) \cdot \mathbf{k}
\end{aligned}
$$

Convolution

- Powerful feature extractor

Convolution

- Powerful feature extractor
- For instance, it can perform differential operation and look for interesting patterns in the input

Convolution

- Powerful feature extractor
- For instance, it can perform differential operation and look for interesting patterns in the input

$$
(0,0,0,1,2,3,4,4,4,4) \circledast(-1,1)=(0,0,1,1,1,1,0,0,0)
$$

Convolution

- Powerful feature extractor
- For instance, it can perform differential operation and look for interesting patterns in the input

$$
(0,0,1,1,0,0.1,0.2,1,1,1,0) \circledast(1,1)=(0,1,2,1,0.1,0.3,1.2,2,2,1)
$$

Convolution

- Naturally generalizes to multiple dimensions

Convolution

- Naturally generalizes to multiple dimensions
- CNNs process 3D tensors of size $C \times H \times W$ with kernels of size $C \times h \times w$ and result in 2D tensors of size $H-h+1 \times W-w+1$

Convolution

- Naturally generalizes to multiple dimensions
- CNNs process 3D tensors of size $C \times H \times W$ with kernels of size $C \times h \times w$ and result in 2D tensors of size $H-h+1 \times W-w+1$
- Note that we generally refer to these inputs as 2D signal (despite having C channels) (Why?)

2D Convolution

input

kernel

2D Convolution

2D Convolution

- Kernel is not convolved in the channel dimension

2D Convolution

- Kernel is not convolved in the channel dimension
- Another way to interpret convolution is that an affine function is applied on an input block of size $C \times h \times w$

2D Convolution

- Kernel is not convolved in the channel dimension
- Another way to interpret convolution is that an affine function is applied on an input block of size $C \times h \times w$

*

- Same affine function is applied on all such blocks in the input

2D Convolution

- Kernel is not convolved in the channel dimension
- Another way to interpret convolution is that an affine function is applied on an input block of size $C \times h \times w$

*

- Same affine function is applied on all such blocks in the input

Convolution

- Preserves the input structure

Convolution

- Preserves the input structure
- 1D signal outputs 1 D signal, 2D signal outputs 2 D signal

Convolution

- Preserves the input structure
- 1D signal outputs 1D signal, 2D signal outputs 2D signal
- Adjacent components in o/p are influenced by adjacent parts in the i / p

Convolution

- Preserves the input structure
- 1D signal outputs 1D signal, 2D signal outputs 2D signal
- Adjacent components in o/p are influenced by adjacent parts in the i / p
- If the channel dimension has a metric meaning (e.g. time) 3D convolution can be employed (e.g. frames in a video)

Terminology in Convolution

Receptive field

Kernel (filter) -1
output

Kernel (filter) -2

Convolution function in PyTorch

- F.conv2d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1)

Convolution function in PyTorch

- F.conv2d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1)
- weight is $D \times C \times h \times w$ dimensional kernels

Convolution function in PyTorch

- F.conv2d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1)
- weight is $D \times C \times h \times w$ dimensional kernels
- bias D dimensional

Convolution function in PyTorch

- F.conv2d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1)
- weight is $D \times C \times h \times w$ dimensional kernels
- bias D dimensional
- input is $N \times C \times H \times W$ dimensional signal

Convolution function in PyTorch

- F.conv2d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1)
- weight is $D \times C \times h \times w$ dimensional kernels
- bias D dimensional
- input is $N \times C \times H \times W$ dimensional signal
- Output is $N \times D \times(H-h+1) \times(W-w+1)$ tensor

Convolution function in PyTorch

- F.conv2d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1)
- weight is $D \times C \times h \times w$ dimensional kernels
- bias D dimensional
- input is $N \times C \times H \times W$ dimensional signal
- Output is $N \times D \times(H-h+1) \times(W-w+1)$ tensor
- Autograd compliant

Convolution function in PyTorch

```
input = torch.empty(128, 3, 20, 20).normal_()
weight = torch.empty(5, 3, 5, 5).normal_()
bias = torch.empty(5).normal_()
output = F.conv2d(input, weight, bias)
output.size()
torch.Size([128, 5, 16, 16])
```


Look/Access the filters

```
    weight[0,0]
tensor([[-0.6974, 0.1342, -0.2632, -0.4672, 0.1827],
[-0.1184, -0.2164, 0.2772, -0.1099, 0.0103],
[-0.8272, 0.3580, 0.2398, -0.5795,-0.9472],
[-1.1734, -0.1019, 0.7394, 0.3342, 0.1699],
[ 1.9271, 0.1250, 0.4222, 0.2014, 1.1100]])
```


Conv layer in PyTorch

- Class torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True)

Conv layer in PyTorch

- Class torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True)
- kernel_size can be either a pair (h, w) or a single value k interpreted as (k, k).

Conv layer in PyTorch

- Class torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True)
- kernel_size can be either a pair (h, w) or a single value k interpreted as (k, k).
- Encloses the convolution as a module

Conv layer in PyTorch

- Class torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True)
- kernel_size can be either a pair (h, w) or a single value k interpreted as (k, k).
- Encloses the convolution as a module
- Initializes the kernel parameters and biases as random

Conv layer in PyTorch

```
f = nn.Conv2d(in_channels = 3, out_channels = 5,
kernel_size = (2, 3))
for n, p in f.named_parameters():
...print(n, p.size())
```

>>weight torch.Size([5, 3, 2, 3])
>>bias torch.Size([5])

Conv layer in PyTorch

```
f = nn.Conv2d(in_channels = 3, out_channels = 5,
kernel_size = (2, 3))
for n, p in f.named_parameters():
...print(n, p.size())
>>weight torch.Size([5, 3, 2, 3])
>>bias torch.Size([5])
input = torch.empty(128, 3, 28, 28).normal_()
output = f(input)
output.size()
>>torch.Size([128, 5, 27, 26])
```


Padding in Convolution

- Adds zeros around the input

Padding in Convolution

- Adds zeros around the input
- Takes cares of size reduction after convolution

Padding in Convolution

- Adds zeros around the input
- Takes cares of size reduction after convolution
- Instead of zeros, one may pad with signal values at the edges

Padding in Convolution

Padding in Convolution

Input w/o padding

kernel

output

Stride in Convolution

- Specifies the step size taken while performing convolution

Stride in Convolution

- Specifies the step size taken while performing convolution
- Default value is 1 , i.e., move the kernel across the signal densely (without skipping)

Padding and Stride in Convolution

Dilation in Convolution

- Manipulates the size of the kernel via expanding its size without adding weights.

Dilation in Convolution

- Manipulates the size of the kernel via expanding its size without adding weights.
- In other words, it inserts 0 s in between the kernel values

Output size of the Convolution

- Input width - W, Kernel size - k, Padding - p, and stride - s

Output size of the Convolution

- Input width - W, Kernel size - k, Padding - p, and stride - s
- Output width $=\frac{W-k+2 p}{s}+1$ (similarly for the height)

Without Dilation

Input
\circledast

kernel

output

Dilation $(2,2)$

Input

\circledast

output

Dilation

- Expands the kernel by adding rows and columns of zeros

Dilation

- Expands the kernel by adding rows and columns of zeros
- Default value for dilation is 1, i.e., no zeros placed

Dilation

- Expands the kernel by adding rows and columns of zeros
- Default value for dilation is 1, i.e., no zeros placed
- Any higher value of dilation makes the kernel sparse

Dilation

- Expands the kernel by adding rows and columns of zeros
- Default value for dilation is 1, i.e., no zeros placed
- Any higher value of dilation makes the kernel sparse
- Dilation increases the receptive field

Dilation

- Expands the kernel by adding rows and columns of zeros
- Default value for dilation is 1, i.e., no zeros placed
- Any higher value of dilation makes the kernel sparse
- Dilation increases the receptive field
- It is referred to as 'atrous' convolution

Pooling

Pooling

- Groups multiple activations and replaces by a representative one

Pooling

- Groups multiple activations and replaces by a representative one
- Reduces the dimensionality of the signal progressively \rightarrow considers non-overlapping stride

Pooling

- Groups multiple activations and replaces by a representative one
- Reduces the dimensionality of the signal progressively \rightarrow considers non-overlapping stride
- Also called sub-sampling layer

Pooling

- Groups multiple activations and replaces by a representative one
- Reduces the dimensionality of the signal progressively \rightarrow considers non-overlapping stride
- Also called sub-sampling layer
- Generally found between two convolution layers (and parameter free)

Max Pooling

- Standard in CNNs

Max Pooling

- Standard in CNNs
- Computes maximum value over a non-overlapping blocks in the input

Average Pooling

- Computes the average of the receptive field

Pooling in 2D

- Same as 1D, but the receptive field is 2D and non-overlapping

Average Pooling

31	15	28	184
0	100	70	38
12	12	7	2
12	12	45	6
$\begin{gathered} 2 \times 2 \\ \text { pool size } \end{gathered}$		$\begin{gathered} 2 \times 2 \\ \text { pool size } \end{gathered}$	
	36	80	
	12	15	

Figure credits: Preston Hoang and Quora

Pooling in 2D

- Contrary to Convolution, Pooling applies channel wise

Pooling in 2D

- Contrary to Convolution, Pooling applies channel wise
- No reduction in number of channels, only spatial size reduction

Pooling provides weak invariance

- Operation is invariant to any permutation within the block

Pooling provides weak invariance

- Operation is invariant to any permutation within the block
- Withstands deformations caused by local translations

Max_Pooling PyTorch

```
F.max_pool2d(input, kernel_size, stride=None, padding=0,
dilation=1, ceil_mode=False, return_indices=False)
```

- Applies max pooling on each of the channels separately

Max_Pooling PyTorch

F.max_pool2d(input, kernel_size, stride=None, padding=0, dilation=1, ceil_mode=False, return_indices=False)

- Applies max pooling on each of the channels separately
- input is $N \times C \times H \times W$ tensor

Max_Pooling PyTorch

F.max_pool2d(input, kernel_size, stride=None, padding=0, dilation=1, ceil_mode=False, return_indices=False)

- Applies max pooling on each of the channels separately
- input is $N \times C \times H \times W$ tensor
- kernel_size is (h, w) or k

Max_Pooling PyTorch

F.max_pool2d(input, kernel_size, stride=None, padding=0, dilation=1, ceil_mode=False, return_indices=False)

- Applies max pooling on each of the channels separately
- input is $N \times C \times H \times W$ tensor
- kernel_size is (h, w) or k
- Result would be a tensor of size $N \times C \times\lfloor H / h\rfloor \times\lfloor W / w\rfloor$

Pooling in PyTorch

- Default stride is the kernel size (for convolution, it is 1)

Pooling in PyTorch

- Default stride is the kernel size (for convolution, it is 1)
- But, it can be modulated if required

Pooling in PyTorch

- Default stride is the kernel size (for convolution, it is 1)
- But, it can be modulated if required
- Default padding is zero

Pooling Layer in PyTorch

class torch.nn.MaxPool2d(kernel_size, stride=None, padding=0, dilation=1, return_indices=False, ceil_mode=False)

Putting it all together

Architecture of a simple CNN

Figure credits: Adit Deshpande

Architecture of a simple CNN

convolution + pooling layers

- Initially Conv layer with nonlinearity

Figure credits: Adit Deshpande

Architecture of a simple CNN

- Initially Conv layer with nonlinearity
- Followed by a few Conv + Nonlinearity layers

Figure credits: Adit Deshpande

Architecture of a simple CNN

- Initially Conv layer with nonlinearity
- Followed by a few Conv + Nonlinearity layers
- Have Pooling layers in between Conv layers \rightarrow reduce the feature map size sufficiently

Figure credits: Adit Deshpande

Architecture of a simple CNN

- Initially Conv layer with nonlinearity
- Followed by a few Conv + Nonlinearity layers
- Have Pooling layers in between Conv layers \rightarrow reduce the feature map size sufficiently
- Vectorize and and fully connected layers

Figure credits: Adit Deshpande

Architecture of a simple CNN

Figure credits: Adit Deshpande

Architecture of a simple CNN

convolution + pooling layers

fully connected layers

Nx binary classification

INPUT -> [[CONV -> RELU] *N -> POOL]*M -> [FC->RELU]*K -> FC

Figure credits: Adit Deshpande

Architecture of a simple CNN

convolution + pooling layers

INPUT -> [[CONV -> RELU] *N -> POOL]*M -> [FC->RELU]*K -> FC

Figure credits: Adit Deshpande

Case study: LeNet-like architecture

input size/ layer information	output size	\# parameters	\# products
$1 \times 28 \times 28$			
nn.Conv2d(1, 32, kernel_size=5)			

Case study: LeNet-like architecture

input size/ layer information	output size	\# parameters	\# products
$1 \times 28 \times 28$	$32 \times 24 \times 24$		
nn.Conv2d(1, 32, kernel_size=5)			

Case study: LeNet-like architecture

input size/ layer information	output size	\# parameters	\# products
$1 \times 28 \times 28$	$32 \times 24 \times 24$	$32 .\left(5^{2}+1\right)$	
nn.Conv2d(1, 32, kernel_size=5)		$=832$	

Case study: LeNet-like architecture

input size/ layer information	output size	\# parameters	\# products
$1 \times 28 \times 28$	$32 \times 24 \times 24$	$32 .\left(5^{2}+1\right)$	$32.24^{2} .5^{2}$
nn.Conv2d(1, 32, kernel_size=5)		$=832$	$=460800$
$32 \times 24 \times 24$			
F.max_pool2d(., kernel_size=3)			

Case study: LeNet-like architecture

input size/ layer information	output size	\# parameters	\# products
$1 \times 28 \times 28$ nn.Conv2d(1, 32, kernel_size=5)	$32 \times 24 \times 24$	$32 .\left(5^{2}+1\right)$ $=832$	$32.24^{2} .5^{2}$ $=460800$
$32 \times 24 \times 24$		0	0
F.max_pool2d(., kernel_size=3)	$32 \times 8 \times 8$	0	

Case study: LeNet-like architecture

input size/ layer information	output size	\# parameters	\# products
$1 \times 28 \times 28$	$32 \times 24 \times 24$	$32 .\left(5^{2}+1\right)$ $=832$	$32.24^{2} .5^{2}$ $=460800$
nn.Conv2d(1, 32, kernel_size=5)			
$32 \times 24 \times 24$		0	0
F.max_pool2d(., kernel_size=3)	$32 \times 8 \times 8$	$32 \times 8 \times 8$	0

Case study: LeNet-like architecture

input size/ layer information	output size	\# parameters	\# products
$1 \times 28 \times 28$	$32 \times 24 \times 24$	$32 .\left(5^{2}+1\right)$ $=832$	$32.24^{2} .5^{2}$ $=460800$
nn.Conv2d(1, 32, kernel_size=5)			
$32 \times 24 \times 24$		0	0
F.max_pool2d(., kernel_size=3)	$32 \times 8 \times 8$	0	0
$32 \times 8 \times 8 /$ F.relu(.)	$32 \times 8 \times 8$		
$32 \times 8 \times 8$			
nn.conv2d(32, 64, kernel_size=5)			

Case study: LeNet-like architecture

input size/ layer information	output size	\# parameters	\# products
$1 \times 28 \times 28$	$32 \times 24 \times 24$	$32 .\left(5^{2}+1\right)$ $=832$	$32.24^{2} .5^{2}$ $=460800$
nn.Conv2d(1, 32, kernel_size=5)		0	0
$32 \times 24 \times 24$	$32 \times 8 \times 8$	0	0
F.max_pool2d(., kernel_size=3)	$32 \times 8 \times 8$	0	
$32 \times 8 \times 8 /$ F.relu(.)			
$32 \times 8 \times 8$	$64 \times 4 \times 4$		
nn.conv2d(32, 64, kernel_size=5)			

Case study: LeNet-like architecture

input size/ layer information	output size	\# parameters	\# products
$1 \times 28 \times 28$	$32 \times 24 \times 24$	$32 .\left(5^{2}+1\right)$ $=832$	$32.24^{2} .5^{2}$ $=460800$
nn.Conv2d(1, 32, kernel_size=5)		0	0
$32 \times 24 \times 24$	$32 \times 8 \times 8$	0	0
F.max_pool2d(., kernel_size=3)	$32 \times 8 \times 8$	0	
$32 \times 8 \times 8 /$ F.relu(.)	$64 \times 4 \times 4$	$64 .\left(32.5^{2}+1\right)$ $=51264$	
$32 \times 8 \times 8$	64×4, kernel_size=5)		

Case study: LeNet-like architecture

input size/ layer information	output size	\# parameters	\# products
$1 \times 28 \times 28$ nn.Conv2d(1, 32, kernel_size=5)	$32 \times 24 \times 24$	$\begin{gathered} 32 .\left(5^{2}+1\right) \\ =832 \end{gathered}$	$\begin{aligned} & 32.24^{2} .5^{2} \\ & =460800 \\ & \hline \end{aligned}$
$\begin{gathered} 32 \times 24 \times 24 \\ \text { F.max_pool2d(., kernel_size=3) } \end{gathered}$	$32 \times 8 \times 8$	0	0
$32 \times 8 \times 8 /$ F.relu(.)	$32 \times 8 \times 8$	0	0
$\begin{gathered} 32 \times 8 \times 8 \\ \text { nn.conv2d(32, 64, kernel_size=5) } \end{gathered}$	$64 \times 4 \times 4$	$\begin{aligned} & 64 .\left(32.5^{2}+1\right) \\ & =51264 \end{aligned}$	$\begin{gathered} 64.32 .4^{2} .5^{2} \\ =819200 \end{gathered}$

Case study: LeNet-like architecture

input size/ layer information	output size	\# parameters	\# products
$\begin{gathered} 1 \times 28 \times 28 \\ \text { nn. Conv2d(1, 32, kernel_size=5) } \end{gathered}$	$32 \times 24 \times 24$	$\begin{gathered} 32 .\left(5^{2}+1\right) \\ =832 \end{gathered}$	$\begin{aligned} & 32.24^{2} .5^{2} \\ & =460800 \end{aligned}$
$\begin{gathered} 32 \times 24 \times 24 \\ \text { F.max_pool2d(., kernel_size=3) } \end{gathered}$	$32 \times 8 \times 8$	0	0
$32 \times 8 \times 8 /$ F.relu(.)	$32 \times 8 \times 8$	0	0
$\begin{gathered} 32 \times 8 \times 8 \\ \text { nn.conv2d(32, } 64, \text { kernel_size=5) } \end{gathered}$	$64 \times 4 \times 4$	$\begin{aligned} & \text { 64.(32.52}+1) \\ & =51264 \end{aligned}$	$\begin{gathered} 64.32 .4^{2} .5^{2} \\ =819200 \end{gathered}$
$\begin{gathered} 64 \times 4 \times 4 \\ \text { F.max_pool2d(., kernel_size=2) } \end{gathered}$	$64 \times 2 \times 2$	0	0

Case study: LeNet-like architecture

input size/ layer information	output size	\# parameters	\# products
$\begin{gathered} 1 \times 28 \times 28 \\ \text { nn.Conv2d(1, } 32, \text { kernel_size=5) } \end{gathered}$	$32 \times 24 \times 24$	$\begin{gathered} 32 .\left(5^{2}+1\right) \\ =832 \end{gathered}$	$\begin{aligned} & 32.24^{2} .5^{2} \\ & =460800 \end{aligned}$
$\begin{gathered} 32 \times 24 \times 24 \\ \text { F.max_pool2d(., kernel_size=3) } \end{gathered}$	$32 \times 8 \times 8$	0	0
$32 \times 8 \times 8 /$ F.relu(.)	$32 \times 8 \times 8$	0	0
$\begin{gathered} 32 \times 8 \times 8 \\ \text { nn.conv2d(32, } 64, \text { kernel_size=5) } \end{gathered}$	$64 \times 4 \times 4$	$\begin{gathered} 64 .\left(32.5^{2}+1\right) \\ =51264 \end{gathered}$	$\begin{gathered} 64.32 .4^{2} .5^{2} \\ =819200 \end{gathered}$
$\begin{gathered} 64 \times 4 \times 4 \\ \text { F.max_pool2d(., kernel_size=2) } \end{gathered}$	$64 \times 2 \times 2$	0	0
$64 \times 2 \times 2 /$ F.relu(.)	$64 \times 2 \times 2$	0	0

Case study: LeNet-like architecture

input size/ layer information	output size	\# parameters	\# products
$\begin{gathered} 1 \times 28 \times 28 \\ \text { nn. Conv2d(1, 32, kernel_size=5) } \end{gathered}$	$32 \times 24 \times 24$	$\begin{gathered} 32 .\left(5^{2}+1\right) \\ =832 \end{gathered}$	$\begin{aligned} & 32.24^{2} .5^{2} \\ & =460800 \end{aligned}$
$\begin{gathered} 32 \times 24 \times 24 \\ \text { F.max_pool2d(., kernel_size=3) } \end{gathered}$	$32 \times 8 \times 8$	0	0
$32 \times 8 \times 8 /$ F.relu(.)	$32 \times 8 \times 8$	0	0
$\begin{gathered} 32 \times 8 \times 8 \\ \text { nn.conv2d(32, } 64, \text { kernel_size=5) } \end{gathered}$	$64 \times 4 \times 4$	$\begin{gathered} 64 .\left(32.5^{2}+1\right) \\ =51264 \\ \hline \end{gathered}$	$\begin{gathered} 64.32 .4^{2} .5^{2} \\ =819200 \end{gathered}$
$\begin{gathered} 64 \times 4 \times 4 \\ \text { F.max_pool2d(., kernel_size=2) } \end{gathered}$	$64 \times 2 \times 2$	0	0
$64 \times 2 \times 2 / \mathrm{F}$. relu(.)	$64 \times 2 \times 2$	0	0
$\begin{gathered} 64 \times 2 \times 2 \\ \text { x.view }(-1,256) \end{gathered}$	256	0	0
$\begin{gathered} 256 \\ \text { nn.Linear }(256,200) \end{gathered}$	200		

Case study: LeNet-like architecture

input size/ layer information	output size	\# parameters	\# products
$1 \times 28 \times 28$ nn.Conv2d(1, 32 , kernel_size=5)	$32 \times 24 \times 24$	$\begin{gathered} 32 .\left(5^{2}+1\right) \\ =832 \end{gathered}$	$\begin{aligned} & 32.24^{2} .5^{2} \\ & =460800 \\ & \hline \end{aligned}$
$\begin{gathered} 32 \times 24 \times 24 \\ \text { F.max_pool2d(., kernel_size=3) } \end{gathered}$	$32 \times 8 \times 8$	0	0
$32 \times 8 \times 8 /$ F.relu(.)	$32 \times 8 \times 8$	0	0
$\begin{gathered} 32 \times 8 \times 8 \\ \text { nn.conv2d(32, } 64, \text { kernel_size=5) } \end{gathered}$	$64 \times 4 \times 4$	$\begin{aligned} & \text { 64. }\left(32.5^{2}+1\right) \\ & =51264 \end{aligned}$	$\begin{gathered} 64.32 .4^{2} .5^{2} \\ =819200 \end{gathered}$
$\begin{gathered} 64 \times 4 \times 4 \\ \text { F.max_pool2d(., kernel_size=2) } \end{gathered}$	$64 \times 2 \times 2$	0	0
$64 \times 2 \times 2 /$ F.relu(.)	$64 \times 2 \times 2$	0	0
$\begin{gathered} 64 \times 2 \times 2 \\ \text { x.view }(-1,256) \end{gathered}$	256	0	0
$\begin{gathered} 256 \\ \text { nn. Linear }(256,200) \end{gathered}$	200	$200(256+1)=51400$	$200.256=51200$

Case study: LeNet-like architecture

input size/ layer information	output size	\# parameters	\# products
$1 \times 28 \times 28$ nn.Conv2d(1, 32, kernel_size=5)	$32 \times 24 \times 24$	$\begin{gathered} 32 .\left(5^{2}+1\right) \\ =832 \end{gathered}$	$\begin{aligned} & 32.24^{2} .5^{2} \\ & =460800 \\ & \hline \end{aligned}$
F.max_pool2d(., kernel_size=3)	$32 \times 8 \times 8$	0	0
$32 \times 8 \times 8 /$ F.relu(.)	$32 \times 8 \times 8$	0	0
$\begin{gathered} 32 \times 8 \times 8 \\ \text { nn.conv2d(32, } 64, \text { kernel_size=5) } \\ \hline \end{gathered}$	$64 \times 4 \times 4$	$\begin{gathered} \text { 64. }\left(32.5^{2}+1\right) \\ =51264 \\ \hline \end{gathered}$	$\begin{gathered} 64.32 .4^{2} .5^{2} \\ =819200 \end{gathered}$
$\begin{gathered} 64 \times 4 \times 4 \\ \text { F.max_pool2d(., kernel_size=2) } \end{gathered}$	$64 \times 2 \times 2$	0	0
$64 \times 2 \times 2 /$ F.relu(.)	$64 \times 2 \times 2$	0	0
$\begin{gathered} 64 \times 2 \times 2 \\ \text { x.view }(-1,256) \end{gathered}$	256	0	0
$\begin{gathered} 256 \\ \text { nn.Linear }(256,200) \end{gathered}$	$\begin{gathered} 0 \\ 200 \end{gathered}$	$\begin{gathered} 0 \\ 200(256+1)=51400 \end{gathered}$	$\begin{gathered} 0 \\ 200.256=51200 \end{gathered}$
200 / F.relu(.)	200	0	0
$\begin{gathered} 200 \\ \text { nn. Linear }(200,10) \end{gathered}$	$\begin{gathered} 0 \\ 10 \end{gathered}$	0 $10(200+1)=2010$	$10.200=2000$

Recent architectures are far more sophisticatedmes. dian Institute of Technology Hyderabad

- Note that LeNet is a classical architecture and does not reflect the recent CNNs in complexity

Recent architectures are far more sophisticated

- Note that LeNet is a classical architecture and does not reflect the recent CNNs in complexity
- Recent CNN architectures are far more sophisticated [Contents of the next lecture(s)]
- More depth
- Machinery to handle the depth

